Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 ., Page 1 of 43

Brent O. Hatch (5715)
HATCH, JAMES & DODGE
10 West Broadway, Suite 400
Salt Lake City, Utah 84101
Telephone: (801) 363-6363
Facsimile: (801) 363-6666

Stephen N. Zack (admitted pro hac vice)
Mark J. Heise (admitted pro hac vice)
BOIES, SCHILLER & FLEXNER LLP
Bank of America Tower — Suite 2800
100 Southeast Second Street

Miami, Florida 33131

Telephone: (305) 539-8400

Facsimile: (305) 539-1307

Attorneys for Plaintiff The SCO Group, Inc.

FiLep IN
UNire,
coy, 0814
" DThicy ?gfgﬁm

- M
Robert Silver (admitted pro hac vice) = ““ERR

BOIES, SCHILLER & FLEXNER LLP
333 Main Street
Armonk, New York 10504

Telephone: (914) 749-8200

SN UNITEDR aT2vES DISTRICT
Facsimile: (914) 74’1@&% AT DRTRICT OF UTAH ‘
Frederick S. Frei (admitted proyhac yi
Aldo Noto (admitted pro hac 31‘0"6 ! 26290’1 aK
John K. Harrop (admimi!ﬁblﬁaﬂ-\géy}MER‘ CLe
ANDREWS KURTH P\R—geppmvaresd
1701 Pennsylvania Ave. NW, Suite 300
Washington, DC 20006

Telephone: (202} 662-2700
Facsimile: (202) 662-2739

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF UTAH

THE SCO GROUP, INC.

Plaintiff/Counterclaim Defendant
Vs,

INTERNATIONAL BUSINESS
MACHINES CORPORATION

Defendant/Counterclaim Plaintiff

|
!
}
:
l
l
|
%
;
|
|

UNDER SEAL

DECLARATION OF
CHRISTOPHER SONTAG
IN SUPPORT OF SCO’S
REPLY MEMORANDUM
REGARDING DISCOVERY

Case No. 2:03-CV-0294 DAK

Honorable Dale A. Kimball
Magistrate Judge Brooke C. Wells

[retaled

@7

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 2 of 43

1. My name is Chris Sontag and I am Senior Vice President and General Manager of
The SCO Group, Inc. My office is located in Lindon, Utah. Unless otherwise noted or evident
from their context, this Declaration is based on my personal knowledge and information
available to me from reliable sources. To the best of my knowledge, information and belief, the
facts set forth herein are true and correct.

2. This Declaration responds to and rebuts the position asserted in IBM’s Response
to SCO’s Memorandum Regarding Discovery, and in the Declaration of Joan Thomas (“Thomas
Decl.”) [Exh. A to IBM Response (“IBM. Resp.”)].

3. IBM claims that producing the materials SCO requests will take “months™.
Thomas Decl. § 3. This is grossly exaggerated. Producing the materials SCO requests, almost
all of which are available on IBM’s computerized Configuration Management Version Control

{CMVC) system, should not take more than a few weeks.

A, IBM’s Configuration Management Version Control (CMVC)

4. SCO needs IBM to produce all revision control system information (including
documents, data, logs, files, and so forth) for AIX and Dynix/ptx from 1984 to the present, and
log information for all interim and released versions of AIX and Dynix/ptx from 1984 to the
present, in a usable, searchable format. Specifically, SCO requires IBM to produce:

A, Source Code Control System’s (SCCS) data files related to AIX, in the
same format and organization as stored in CMVC and
B. the SCCS directory hierarchy used by CMVC,

all on standard format (ISO-9660 with RockRidge extensions) DVDs; as well as

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 3 of 43

C. Any other AIX- and Dynix/ptx-associated information stored on CMVC
and/or RCS.

5. According to IBM, the CMVC system “provides configuration management,
version control, change control, and problem tracking in a distributed environment to facilitate
project-wide coordination of development activities across all phases of the product development
life cycle.” CMVC Introduction [Initial Mem., Exh. 7]. In short, CMVC maintains all versions
of a particular program, and tracks changes to and problems with that program entered by
multiple users.

6. CMVC can be accessed at remote locations, and includes tracking information
about source files, defects, and features. Overview of ALX Source Control (1710013143)[Exh. 1].

7. CMVC also records author information, so that every time a programmer enters
information onto CMVC, the programmer’s name is recorded, as well as the date of the entry and
what action was taken. IBM’s Redbook, Did You Say CMVC?, Sept. 1994, at 9 [Exh. 2]; Email
from Adrian Mitu of IBM Canada, Aug. 19, 1993 (located at
<http://www.c¢s.queensu.ca/Software-Engineering/blurb/cmve>) [Exh. 3].

8. According to at least one IBM employee, several functions of CMVC are
designed for fast, simple access to revision history of software programs. For example, the “VC”
(Version Control) function of CMVC “eliminates confusion when looking for a particular source
code file belonging to a particular product™. Email from A. Mitu [Exh. 3].

9. Another IBM employee explains the “advantage of CMVC is its versatile

development process that can be configured for small, medium and large projects. The process

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 4 of 43

can also be configured to meet the needs of each stage of development. . . .” A Versatile
Development Process for Small to Large Projects Using IBM CMVC, Seong R. Yu [Exh. 4].

10. CMVC information for AIX is contained on a single CMVC server at IBM.
Thomas Decl. 7.

11. IBM exaggerates the burden it faces in producing the CMVC information SCO
requests. CMVC is designed so that multiple engineers may easily access the system, log in and
out with changes and modifications, and continue to develop AIX without delay or disruption.
See CMVC Introduction [Initial Mem., Exh. 7]. If CMVC could work only in the extremely slow
way IBM alleges, IBM’s daily business operations would be hindered.

12, IBM uses the flexibility and sophistication of CMVC in its marketing efforts,
claiming that IBM uses automated scripts to incorporate fixes and changes daily. IBM-Siebel
Marketing [Exh. 5] at 23.

13. IBM has produced a limited set of the prior versions and releases (and copies only
of currently supported versions: 4.3, 5.1, and 5.2), and few if any maintenance modifications.

14. By selecting only certain versions to produce, IBM created more work for itself as
IBM had to search its CMVC system for the correct code that constituted the produced versions
and releases. IBM’s decision to extract only selected releases of AIX and Dynix/ptx for
production was more burdensome for [BM to carry out than simply giving SCO access to all the
CMVC information.

15. There are often two methods of solving a particular problem in computer science:
“top down” and “bottom up”. In Thoras’ description of IBM’s burden, IBM is proposing to use

a bottom-up approach, which is overly laborious, and an unnecessary expenditure of time and

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 5 of 43

resources. IBM’s bottom-up approach requires IBM to look at all parts of its CMVC database to
find directories that SCO wants.

16. Because CMVC has a database component, IBM’s approach requires it to query
the database to find the required directories by specific file name. The problem with this
approach is that the database query may find too many directories.

17. As an analogy to the burdensome task IBM assigns itself, when searching on
Google, a large number of search matches may be returned, some of which do not satisfy the
constraints the searcher wants, but do satisfy the exact wording of the request. Thus, the search
results must often be refined to match the searcher’s constraints more precisely; otherwise, many
unsatisfactory matches must be examined needlessly. The same is true of IBM’s proposed
solution to the SCO’s requested CMVC discovery.

18. However, continuing the Google analogy, if the searcher instead knows the
website he is searching for, he would simply go to that web page directly, instead of using
Google. Only if the website option is not available are the extra burdens of searching required.
Here, the extra burdens of searching are not required because there is “website option”; that is,
CMVC overlays IBM’s SCCS hierarchy, so 1BM can collect all AIX information based on that
hierarchy using directory names. Thomas Decl. f 9-10. No searching is required, simply a
look-up of AIX files by the name “AIX.”

19. This “top-down” approach will not only work, but will be sufficient and is the
most time- and labor-efficient means for IBM to collect the CMVC information SCQO requires.

20. For example, consider the following file tree (which is a part of the AIX tree for

AIX version 5.1), produced by IBM:

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 6 of 43

FIGURE 1
AIX510---src——+-bldsnv--...

l—bos ————————————— +-diag-...

l—cde—... l—etc~... +-io...

l—des—... l—kernel ————— l-jZ...

!.. l—kernext l—net...
i—sbin—...
|

21. There are 38 subdirectories under the “src™ directory in AIX510, four of which

are shown in Figure 1 as examples (bidenv, bos, cde, and des). One of these is “bos,” probably
an abbreviation for “basic operating system”. There are 10 further subdirectories under “bos,” 5
of which are shown in Figure 1 as exaraples (diag, etc, kernel, kernext, and sbin).

22. The file tree in Figure 1 shows the layout of SCCS for all versions of AIX,
meaning that AIX directories are easily recognizable.

23. The CMVC system overlays SCCS hierarchy. Thus, CMVC, organized by IBM’s
SCCS hierarchical method, looks similar to Figure 1. Therefore, any directory (or “tree limb™)
associated with “AIX” (here, it is called AIX510) will fall within SCO’s requests, and should be
produced. This method of seeking and collecting directories responsive to SCO’s requests is a
top-down approach.

24. The CMVC system is analogous to the Lexis/Nexis or Westlaw systems. Each is
a database system containing data to be accessed remotely by multiple users. Searches are

conducted in each system to [ocate particular data maintained in each database. Each uses tools

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 7 of 43

for user interfacing, allowing searches of the databases. Each court decision recalled from
Lexis/Nexis or Westlaw is ltke a computer file stored as text in CMVC. For example, searching
for AIX on CMVC might be compared with searching the Utah State Reporter System. Within
the AIX directory/subdirectory tree, searching for the directory “src” might be compared with
searching a particular Utah district. A subdirectory may be searched which would be analogous
to searching a Judge’s name.

25. IBM’s internal CMVC documents prove that SCO’s top-down approach will be
significantly less burdensome than the approach IBM assumes. IBM’s Overview of ALX Source
Control (1710013143) [Exh. 1] reveals that CMVC material is generally maintained in a
hierarchical structure. IBM’s SCCS, based on a file tree structure, can find all directories
assoctated with AIX stored in SCCS format on CMVC.

26. IBM could write a “script” (as IBM defines it, a small computer program)
(Thomas Decl. § 9) to seek out and collect the relevant CMVC information. For SCCS
hierarchical data, writing this “script” and running it should take no more than one day (not
weeks or months), and for competent IBM engineers familiar with CMVC, probably less.

27. In the alternative, IBM can use standard archival tools to determine the locations
of the SCCS directory hierarchies related to AIX, and make copies. These tools basically say “I
want everything under these directories” and then copy all of the files in those directories. Thus,
this procedure is neither burdensome nor time-consuming.

28. If IBM follows this top-down approach to collecting the information SCO has
requested, the burdens IBM describes in its Response and the accompanying Declaration of Joan

Thomas — as to time and effort — will be significantly lessened.

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 8 of 43

29. IBM asserts that it will need to confirm that the directories extracted from CMVC
are actually part of the AIX operating system. 7Thomas Decl. § 9. Especially for SCCS
hierarchical data, this review is entirely unnecessary, and serves only to falsely inflate IBM’s
estimate of the time and burden required to produce the materials SCO requests. First, these files
will be produced under a protective order.

30. More importantly, if the files are labeled in CMVC as being part of AIX - or
otherwise identified as being required to do any of the AIX releases — then the directories are
relevant and responsive to SCO’s requests, and should be produced.

31. IBM also provides a misleading time estimate in stating that to copy AIX
information from data tapes onto DVDs or CDs would take “many additional weeks”, after the
“many weeks™ already taken to collect the information. Thomas Decl. § 11. This is grossly
exaggerated.

32, Ms. Thomas admits in her Declaration that all files on CMVC containing AIX
operating system source code constitute only 40 gigabytes of data. Thomas Decl. § 10. This
amount of data will easily fit onto a typical laptop computer (running UNIX) or a typical
portable hard drive, both of which have at least 40-60 gigabytes of disk space, or onto 10 DVDs,

33. It takes less than 1 hour to burn a single DVD, and transferring AIX data from
CMVC onto 10 DVDs should take approximately one day. Therefore, the most efficient
alternative for both SCO and IBM is for IBM to copy the AIX directories onto ten standard
format (ISO-9660 with RockRidge extensions) DVDs, as this standard format can easily made

by IBM and easily used by SCO, and does not take a great deal of time to complete.

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 9 of 43

34, In sum, it should not take IBM more than two days to extract and copy the

relevant SCCS hierarchical data onto 10 DVDs.

B. Format of Tapes Produced by IBM

35, IBM claims that the “high-capacity storage tapes™ it initially produced to SCO
“are standard throughout the computer industry.” IBM Resp. at 10; Thomas Decl. § 11. This is
not entirely accurate. While many sites still use the tapes used by IBM, IS0O-9660 DVDs or CD-
ROMs are the current standard interchange format, and IBM’s initial production was not in this
format. Since IBM’s tapes and IS0O-9660 DVDs each hold roughly the same amount of
information, and since DVD burners are far less expensive than tape drives, it should be no

hardship for IBM to produce the data in DVD form.

C. Sequent’s Revision Control System (RCS)

36. Sequent used a system similar to IBM’s CMVC and SCCS called Revision
Control System (RCS) to track the revision history of Dynix.

37. IBM does not state where it maintains revision history information for Dynix/ptx,
or whether IBM still uses RCS. Thomas’ Declaration states only that Dynix information is not
maintained on CMVC. Thomas Decl. § 5.

38. RCSis an open-source program, and easily available to IBM.

39. IBM has not stated that the Dynix/ptx source code RCS database is shared with
any other projects, so IBM should be able to simply copy the entire Dynix/ptx RCS database

without review or extraction, and without taking any of the steps it claims are required for the

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 10 of 43

AIX CMVC source code database, FEven if RCS is not currently maintained, unless IBM has
intentionally deleted the RCS database, the database can be provided without burden. Therefore,

IBM would not bear any burden in producing Dynix/ptx information, if that database still exists

or has been archived.

D. Programmer’s Notes and Design Documents

40. Programmer’s notes and design documents are often stored in the CMVC or
SCCS change logs. Ms. Thomas confirmed that IBM stores programmer’s notes and design
documents on CMVC. Thomas Decl q 12. Therefore, these programmer’s notes and design
documents can produced as part of IBM’s production of CMVC data.

41. As explained in my 56(f) Declaration (¥ 53), programmer’s notes contain the
thought processes of individual programmers as they write and revise code sequences. For
example, programming notes might list changes made to code, and might list additional changes
to consider. As such, programming notes provide detailed rationale for code changes and an
indication of how the code may change in the future. Programming notes are often formatted as
“readme” files that are saved in the sarne directory as the corresponding source code files.

42. As explained in my 56(f) Declaration (Y 52), design documents are often prepared
by the group that ultimately authors the changes to the code sequences, and explain the initial
code concepts, and how such code will be developed and written. As such, design documents
provide an invaluable bridge between existing code sequences, such as in UNIX, and derivative

works, such as in AIX and Dynix.

10

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 11 of 43

43, Therefore, programmer’s notes and design documents might contain admissions
as to reliance on structure, sequence and organization that could connect UNIX System V to
modifications in AIX and Dynix/ptx, and thus point SCO to hot spots of copying in Linux.

44, Programmer’s notes and design documents may significantly shortcut the other
procedures of painstaking manual line-by-line code comparisons which SCO has used and
continues to use to find evidence relevant to its claims and defenses, which are extremely time-
and labor-intensive procedures.

45. SCO has used tools that are capable of taking minor changes in lines of code into
consideration in finding literal copying. Ultimately, however, these tools can provide only an
indication of where an experienced programmer should look in order to perform an intelligent
manual comparison. Consequently, extensive manual work is still required.

46. With production of the materials SCO’s requests in its Initial Memorandum,

SCO’s need to use these onerous tasks will be significantly lessened.

11

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 12 of 43

[declare under penalty of perjury th

Executed: July | Z_, 2004

istopher Sontag

12

Case 2:03-cv-00294-DAK-BCW Document 203

Filed 07/12/2004

CERTIFICATE OF SERVICE

Page 13 of 43

I hereby certify that a true and correct copy of Chris Sontag’s Affidavit in Support of

Reply Discovery Memorandum was served on Defendant International Business Machines

Corporation on this 12™ day of July, 2004, by placing it in U.S. Mail, first class postage prepaid,

to:

Alan L. Sullivan, Esq.

Todd Shaughnessy, Esq.
tshaughnessy@swlaw.com

Snell & Wilmer L.L.P.

15 West South Temple, Ste. 1200
Gateway Tower West

Salt Lake City, Utah 84101-1004

Evan R. Chesler, Esq.
echesler@cravath.com
Cravath, Swaine & Moore LLP
Worldwide Plaza

825 Eighth Avenue

New York, NY 10019

Donald J, Rosenberg, Esq.
1133 Westchester Avenue
White Plains, New York 10604

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 14 of 43

EXHIBIT 1

CONFIDENTIAL

j

Case Z03-Ccv-00294-DAR-BCW—Duocument 20S—ted-67422004——Paget5ef43—

RPN 8

The following information describes the framework that IBM currently ulilizes to manage the ADX
Operating System and relited product source code, This framework facilitates distributed development
involving remote IBM sites as well as external companies while maintaining a common AIX product
source tree.

This informanion is being supplicd for peneral working Imowledge, is non-binding and in no way sepresenis
a commitreent from IBM 1o the reader. Amy arrangements regarding working relationships, source access,
licensing, joint development and derivative works must be subject to the provisions of a definitive
agreement executed by authorized representatives of IBM and applicable parties,

Overview of AIX Source Control

AIX development utilizes two major systems to develop and control AIX source. These are the CMVC
product (Configuration Managemnent and Version Control) which is nsed to manags changes 1o AIX sonrce
code and the ADE (AIX Development Environment} which is used to support development and build of the
ATX source. The CMVC syster is a client-server systent where the server system muintains the databass
of source files, their deltas along with their change history and associated defects and features. The CMVC
client is supported on many different platforms and can be used at remote Jocations to obiain, creste and
modify source as well as manage defects and features, A defect is o CMVC record opened apaingt a
particular product or product component for the purposes of reporling a bug in the product that needs a fix.
A CMVC feature is a record opened agpinst a particular product for the purposes of enhancing the product.

CMVC movides a very flexible report management system o provide information concerning source file,
defect (bug) and feature (desipn change / enhancement) information tracking information,

The official ALX source is stored in CMVC managed databases at IBM Austin. Sonrces are organized
within CMVC by product and within cach praduct by components. Components are arranged in a
hicrarchical structure with a single top component called root. The component structure reflecis
organizational requirements for the development of AIX and related products. It is different and scparae
from the actual product binary structure, and from the source file tree organization wsed for file location
and building, At any point in time, ownership and control of a particular part of the product is detcrmined at
the component Jevel. All files in the prodnct have a designated component, aud change authority is
managed at the component lsvel. The component owners can be local to IBM Austin, remote siles within
IBM, or external to [EM. Each compouent owner has control over whom within their area may access the
component source and at what privilege Ievel. CMVC enforces access comtrol at the component level.

Many releases of ADX exist in CMVC as delta sources. Some are dedicated 10 sexrvicing of curment software
versioms available for customers and others are for software under devclopment. There is only one release
per product in CMVC at amy point in lime that is in development phase. When the stabilization of this
development version is required prior to final product testing, a new CMVC release tree is created for
future development.

During product development, CMVC is typically used with Source Control and Change Control binding
activated. Binding Change Control links afl file changes 10 a reported problem (CMVC defect} or proposed
design change (CMVC feature). When a developer wishes (o make a change 10 a source file, the source is
checked out of CMVC (locked to prevent others from modifying (he file). When a modification has been
codled, inspected and unit tested the sources are checked into the CMVC repository is Austin creating a
new delta of the file tracked by a version sumber (SCCS ID). Al the file check-in time, developers must
relate the change 1o a defect or feature number,

CMVC pravides a mechanism to track which modification requests arc implemented for one release. This
mechanism defines “tracks™ and “Jevels”.

Each defect or Featurs that will result in a source file creation or modification will have a track associated
with il. The defect or feature owner can create the track, and specify all components that are expecled to
make source changes relating (o the track. Developers that are making changes to source files in support of

1710013143

Case 2:03-cv-00294-DAK-BCW Document 203~ Fited 07/1212004—Page16of4S—
L}
< \.,

the defect or feature, check-in the updated source file by specifying the track which is associated with a
particular produci release.

A selecied set of fix or feature tracks for a specific product and release are grouped in a level in order to do
a build once all components specified in the track have been marked “complete” by the component
developers,

Overview of ADE

The AIX Development Environment is designed to allow simultaneous development on multiple releases of
ene or more product sources, The ADE is an cnhanced version of the ODE (OSF Development
Environment) tools. It is based on the standard Unix make command and Makefile but has been enhanced

to support two main types of workspaces:

s Sandbesc: This is a private working area which a developer owns and controls. Sandboxes contain both
source and object files that have been modified by the developer, but have yet to be incinded in a
product build. Sandboxes can be shared between a team of developers.

« Backing Trez; This is 8 cammon soarce and object-backing trez for all developers, It contains a fifl set
of product files, objects and exccutables. The developer selects which backing tree to build their
sandbox against. A sandbox is baclked 10 2 backing tree or to anciber sandbox, During a private or
production build, when an action reguires & file that is not in the sandbox, ADE searches the backing
tree of the sandbox for the file,

A sandbox usnally contains only the files the sandbox aser wants or has modified. The backing tree is a
chain of sandboxes with the xoot of the chain being the bacldng build. The backing build is usnaily the tast
published production build All development and build tools comprising ADE are included in the
production build ((hus backing build), vo that all developers are mtilizing the same level of toals,

Overview of Build Management

There are typically three types of builds performed. Production builds which are performed by the Austin
based BAI (Build and Inegration) group, and area builds that are typically down by the local development
groups and sandbox builds thal are done by one or more developers, Developers do thelr sandbox builds
to verify the correctriess of their changes befure they check the changes back inte CMVC. Once the
changes have been checked into CMVC, the local area baild team collacts the lists of tracks from the area
{and any dependent tracks from other groups) and puts those tracks into a level. That level is then extracted
from CMVC which pulls all of the changed files inlo a erez build sandbox, and the sandbox is built, A
sniff test is performed by the local area builder to ensure the basic function is maintained. If afl of these
operations are successful, the area build is deemed successful and the area buildcr provides the Jevel (list of
all racks) to Austin BAI. BAI then collects all successful levels from the area builders (typically on a
regularly scheduled beild interval), extracts those levels from CMVC inlo a BAI sandbox and performs the
build. Once the build is suceessful a build verification test is mn to ensure the prodnct of the build is
hasically fanctional. If not, the build group opens severity 1 defects against the componenis introducing
probiems. Once the test i3 successful, BEAI commits the level in CMVC which moves all tracks in the build
1o committed state, which then resulis in zll track owners receiving test records to verify that their changes
are correct. Once committed, tracks cannot be modified, new defects must be opened to make corrections.

The complete tree containing sources, binaries, tools and the bootable sysicm is deemed a Production build
and published to IBM sites using DFS 1o be used as their latest backing tree for continucd development,

For cxternal sites {not having DFS accass) the exiraction tool used 10 extract build sonrce from CMVC has

} the capability to use the origin information associated with each file to facilitate the external sites

'l compliance with licensing restrictions. In cases where this makes the source not build-able, the tool injects
appropriatc stub files 10 ensure the build is successful. These source files are then packed inio a format

acceptabls 1o transmit them o the remote site, where they are extracted and built locally to provide the

local backing build

CONFIDENTIAL ' 1710013144

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 17 of 43

EXHIBIT 2

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 18 of 43

Did You Say CMVC?

Document Number GG24-4178-00

September 1994

International Technical Support Organization
San Jose Center

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 19 of 43

1.4 Automated Support for 3CM and Change Management

While procedures and practices to implement SCM and change management can
be manual, and in fact were for many years, they lend themselves particulariy
well fo automation. As applicaticn development became increasingly complex, it
became not only more convenient, but absolulely necessary to avtomate most of
the tasks and procedures supporting SCM and change management. When it
became possible for SCM and change management tools to take advaniage of
relational database technology, data about the configuration objects and change
reports could be accumutated and accessed in a variety of ways peyond that
necessary merely for SCM and change management purposes if the SCM tools.

When IBM undertook to develop its own UNIX-based operating system, AlX, it
discovered it needed a UNIX-based industrial strength SCM and change
management system that could support thousands of users, hundreds of
Gigabytes of project dala, and tens of thousands of report queries daily. 1BM
needed a product which supperted its development methodology, met its QA
requirements, and was compatible with its development environment. |IBM
needed reliabiiity, flexibility, and performance. No one SCM product at that time
included all the features, which IBM knew it required for AlX development. Many
provided version contro! or release management, but none integrated automated
change management with automated SCM

IBM, therefore, developed its own SCM and change management tool on AIX.
This tool, developed for internal use, was called Orbit. After Orbit had been
successfully used to bring out several releases of AlX, IBM realized that other
software engineering and business application developers could also benefit
from a tool with Orbit’s capabilities. So, they developed a commercial SCM and
change management tool from Orbit and named it Gonfiguration Management
Version Contrel (CMVC).

1.4.1 Configuration Management Version Control

8

CMVC Live

This section gives a brief overview of the features and functions of CMVC.

CMVC is a client-server application. CMVC products execute on the HP-UX**
from Hewlett-Packard** (HP**), on Sun0OS** and Solaris** from Sun** and on
AEX/6000. Client portions of these products interoperate with any server portion.
There are a command-line client, a stand-alone graphical clisnt, and graphical
client, which can be integrated into the IBM Software Development Environment
(SDE) WorkBench/6000 or the HP SoftBench™™ environmenl. The CMVC server
accesses data stored on its host's file system and data stored in a relationat
database, managed by DATABASE 2/6000 (DB2/6000*), ORACLE**, INFORMIX"*,
or SYBASE™* products. CMVC provides a wide range of functions.

1.4.1.1 Configuration Management

CMVC provides mechanisms for identifying, monitering, and managing changes
made fo a software baseline. The baseline may contain any type of data,
including: documentation, design and specification data, and build and compite
controt information, as well as the scurce code itself. Files managed may
contain text or binary dala. CMVC supports files containing these types of data
by associating them with CMVC “components.” Components may be organized

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 20 of 43

into a component hierarchy to reflect the application’s design, responsibilities in
the development organization, or other relevant schema. Components are
owned and manipulated by CMVC user IDs which are mapped to operating
system user iDs, on specific network hosts,

1.4.1.2 Version Control

Version control is provided by standard UNIX Scource Code Control System
(SCCS), or by PVCS Version Manager**, a product available from INTERSOLYV,
Inc. Version control ensures that any given version of a file from the present
back to its initial version can be identified and retrieved, and that the differences
between any two versions can be readily identified. Version control in CMVC
applies to bolh ASCIt and binary data files.

1.4.1.3 File Change Control and History

CMVC ensures that an audit trail is maintained for every fife by identifying for
any file change: when the change occurred, who was responsible, and why the
fite was modified. If problem tracking is in place, CMVC ensures that all file
changes identify the authorizing defect or feature, and that no file changes are
allowed without such authorization.

1.4.1.4 Integrated Problem Tracking

Problem tracking, both for feature and defect changes is provided by CMVC.
Features and defects are associated with a CMVC component. In addition to
describing the enhancement proposed or problem encountered, they identity the
specific versions of alf conirolled files, which implement the feature or defect,
Problem tracking implements a configurable process. This means that defects
and feature processing can be omitted. If they are used, defect and feature
processing c¢an go through a series of states, some of which are optional.
Defects and features can be opened, cancelled, returned, or implemented after
an optional design, size, and review subprocess is conducted. There is also an
optional verily subprocess to verify that the changes were satisfactorily
incorperated in a formal release,

1.4.1.5 Release Management

CMVGC supports the concept of a “track,” which is a mechanism to relate an
individuat defect or feature with the set of file changes that implement that defect
or feature in a given “release” or “level of a refease” of an application. Use of
tracks is also a configurable process; tracks processing is optional, and if used,
has optional subprocesses for approval, fix, and lest, If used, tracks go through
a series of states which include: approve, fix, integrate, commit, test, and
complete,

Releases and levels are CMVC mechanisms for defining interim basslines of the
application. CMVC records the exact version of every file comprising the
release, including build instructions, and can exiract those files into build
directories. Release management is a configurable process which can include
or omit the track process, and if the track process is employed, an optional leve!
subprocess. A level is a group of changes thal are incorporated into a release
in a sequential and carefully menitered manner. A tevel is first in a working
state, then tested in an integrated build committed when satisfactorily tested and
marked as complete when all changes identified for that level have been
successfully incorporated into the release.

Chapter 1. Sollware Conliguration Management ang Change Management Overview 9

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 21 of 43

1.4.1.6 Access Control

Componenis provide a mechanism by which CMVGC contrels access to files under
its control. Access of a variety of sorts can be defined for all files associated
with a given component. CMVC user IDs implicilly acquire some access
authorily for components by virtue of owning them, and may inherit other access
authority from parent components. They can explicitly grant or deny access
authority over componenis which they own to other CMVC user IDs,

1.4.1.7 Automatic Notification

CMVC provides for automatic notification of CMVC actions affecting particular
components ard their files to “interested" users. Notification is provided by
electronic mail, so a user dees not have to start up CMVC to be aware of the
CMVC actions. A CMVC user {D’s “interest” in being notified of CMVC actions
can be specified in terms of specific CMVC actions and affected components.

1.4.1.8 Customization

CMVC allows additional fields 1o be added to the database records that
implement CMVC features, defects, files, and users, These new fields are
reflected by appropriate changes to CMVGC windows, reports, and command-line
parameters,

CMVC also enablies configuration of the processes that manage CMVC objects,
such as files, features, and releases. Configuring these processes determines
the varicus states through which these objecls can pass.

CMVC allows you to define “user exits” that automatically execute a UNIX shelt
command file, or user-written executable program whenever specific CMVC
commands are executed. You are allowed to select parameter data, related to
the CMVC action and object it is affecting, to be passed by the CMVYC command
to your the shell command file or program. You can also determine if the user
exit is triggered before or after the CMVC command executes,

10 CMVC Live

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 22 of 43

File E{'W Oplions

Horizontal £ Vertical SR

7

‘ICOBOL /\ source/ cabolfibmbuins. . (create)i 4

.. source/cebol/ibmbupda. .1 (create}
AN =)

Wsourca/cobolfibmoupd] . . (create)' :

saurce/cobolfibmoulal. . (create)l

1/4bs ; - &
Touek i 0d 00007 \ /source/coho /i bmoull. . (creﬂl’.e)] : -
—‘{SOUI'CBI’COb01/ime\J_003-paﬂ .1 [create)] B

isource/coba]/ibmnuﬂob.pan 1.1 {create)J R 3

sourcefcohol/ibmoul@s, pan 1.1 (creute)l

\source/cobol/ibmuuﬂﬂﬁ.pan - 11 {create)!

/“{source,/cuhnlfibmbsvljcl - 1.1 (create)l

\‘“'[source/cabolfibmbupda.jc] - 1.1 [creute]J

Ireonas@beding prod
et e g R B i e B T i

Figure 24. Level Change History

The application source files, managed by SCCS, are stored on the fils
system associated with the AlX family login name, prod. The prod family
audit log file (/production/audit/log) traces all CMVC transactions that were
performed.

40 CMVC Live

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 23 of 43

Chapter 4. Planning for CMVC

In this chapter we offer some general advice on planning to use CMVC, as well
as offer some examples of how to apply specific features or functions in CMVC.
We also show how a small application development project, described in
Chapter 3, "Overview of the Application Development Project” on page 41 and
alluded to in Chaptar 2, "Discovering CMVC: An New Application Project !s
Introduced to CMVC" on page 11, planned for its use of CMVC.

4.1 Why Plan?

The most important thing to understand about CMVC is that you do not need to
understand alt of it, before you begin using some of it. CMVC is broad in is
function, thorough in its implementation, and very flexible. CMVC provides many
mechanisms 1o help you accompiish your SCM goals, but it does not dictate
exactly how you should use them, nor does it require that you use them ali i you
use only some of them, This is one of the distinguishing advantages of CMVC.
Because no two development efforts have exactly the same number of
requirements, the same degree of complexity, scope of effort, or the same
hardware and software resources, how they approach SCM with CMVC varies
significantly. Recognizing this, CMVC was designed to be set up, taitored, and
utilized according o the needs of the individual project. Therefore, it is wise to
ptan in advance which features of CMVC you want to use initiaily, how you want
to apply them to your SCM problems, and which features you want to phase in
gradually.

The first step in this planning process is to go over the CMVC product
documentation carefully. These doscuments identify and define CMVC objects,
such as Files, Releases, and Users, and describe how CMVC users access and
manipulate them, in /IBM CMVC Concepts, you find a description of CMVC
concepts, objects, processes, and interactions. Look in 18M CMVC User's Guide
and IBM CMVC Commands Reference for details on how o use individual
commands and GUI windows. [BM CMVC User's Reference provides a place to
leok up lists of options, record structures, and field atiributes.

However, what you will not find in these documents is the correct interpretation
of how 1o map CMVC objects to the real objects of your application development
effort. Nor will you find advice on which circumstances call for using or not using
a given CMVC object or function. This is because there is no single correct
application of CMVC; this will vary with your circumstances.

The second step in planning, therefore, is to compare your thoughts of how to
apply CMVC to someone else’s actual experience. Since not everyone can do
this, we have written this chapter. It provides a practical example of how to plan
far and apply CMVC objects, concepts, and processes to meet the negeds of an
actual software development project. This chapter aiso suggests alternative
approaches to CMVGC that were not usad on this project, but are based on other
experiences with CMVC.

SCM is not a short term effort, nor does it exist in isolation. SCM responsibilities
for an application begin during its development and continue as long as it is in

use. The SCM effort on an individual application development project is aiso
part of a targer SCM effort in the development organization. Therefore, original

© Copyright I1BM Corp. 1994 65

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 24 of 43

plans for CMVC are subject to revision as the needs of the project change and
as additional projects start up. Your use of CMVC will also evolve as you
become more familiar with its capabilities. Generally speaking, CMVC is
amenable to this fact of fe. But, some decisions about CMVC that you make at
the beginning of a project, have a long term impact. This book helps you
distinguish between these and other decisions, which you can make tentatively
now and the plan 1o modify as time passes.

CMVC provides a command-line interface client, as well as a GUi client. Rather
than refer to specific command and parameter names, and equivalent GU{
window and menu jtems in this chapter, we refer to CMVC actions by a generic
name. For example, we refer to the FileCreate CMVC action, when we mean
either the File -create command, or the Create selection on the Actions putl-down
of the CMVC - Files window. You should refer to the manuals o identify the
acfual correct spelling of the command and parameter, or window and menu
item names.

4.2 Pre-installation Planning for CMVC

Before you install CMVC, you shouid:

+ Plan your natwork license requirements and distribution of licenses over
your hosts

+ Plan your distribution of GMVGC client and server software across your hosts

+ Identify and define the purposes served by your CMVC families.

4.2.1 Planning Network License Requirements

66

CMVC Live

CMVC makes use of Network Licensing System™ (NetLS**). For details on how
Netl.S works and how CMVC makes use of the NetlS licensing mechanism refer
to 8.2, “NetlLS Installation and Initialization” on page 163. There are some
decisions you must make regarding NetlS; they are primarily questions of
network and system administration. These include whether to have more than
one NetlS license server, and how to distribute license tokens for various
licensed programs among them. The primary decision you must make regarding
CMVC and NetlS, however, is how many CMVC license tokens your project will
require.

4.2,1.1 What to Consider in Planning Network License
Requirements

To plan your CMVC license token regquirements, try to determine the maximum
number of users who will be using CMVC at any one time. Someone performing
SCM functions may need access all day long, while your developers may use
CMVC infrequently. Not all developers will use CMVC to the same degree; it
may depend upon their specialized role in your project. The project and team
leaders may use CMVC a few times daily, while testers and build integrators
may use it constantly.

Before a CMVC client issues a request to the server, it requests a license, or a
token. Afier gelting it, that CMVC client holds it a minimum of fifteen minutes.
(This s CMVC’s default minimum expiration time). 1f, in the next fifteen minutes,
that client issues another request to the CMVC server, that token’s expiration
time is extended again by fifteen minutes. So, if you bring the CMVC client GUI
up, make and refresh gueries, display new windows, and perform CMVC actions
every few minutes all day long, you will effectively use one token for most of that

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 25 of 43

off as parameters o a CMVC command that is issued from the Development
Manager CMVC pull-down menu, if that command involves the same component
and release fuple associated with that context mapping. The purpose of this
arrangement is so that end users can work in directory hierarchies that mimic
the path names associated with files under CMVC control, and have the
Development Manager prefill CMVC window fields (which require path and file
names} with the correct path names. It is very important to master this concept
and use context mappings, because CMVC can get confused if you add these
path names by hand where they should be prefilled. Context mapping is
described in more detail than we provide here in "The CM Class Messages” of
“Using the Message-Integrated CMVGC GUI" of IBM CMVC User's Reference

It is not recommended that users edit the .cmvere file. If you want to clear a
single mapping default, clear the component and release fields from the Context
Mapping dialog box when it is being prompted. However, if you want to delete
some mappings, leaving others, or simply verify the mappings that you have
defined, edit this file.

E.3 implications

of Host Scoping for CMVC

CMVC is not designed to be "network aware” in that it does not know it can
concatenate the path name /nfs/hostname (using the data context’'s host name,
parameter passed to it by Execution Manager) to the data ¢ontext’s path name
parameter, to find a hle on a remote host. The CMVC client merely compares
the host parameter passed to it against, the host on which it is executing, and if
they do not match, CMVC issues an error message.

we infer that CMVC designers made this design decision, hecause CMVC is a
host scoped tool. But we do not think thal being host scoped necessarily implies
a tool is not network aware. QOther tools, such as the Build Taol, which is
network scoped, and the Development Manager, which is directory scoped, are
network aware, and can locate remote data, assuming the proper file systems
are exported and mounted. Host scoping simply means that only one inslance of
the tool can be invoked automatically by the Execution Manager per host.

if you have multiple CMVC clients instailed on your network, and want to have
CMVC access data on them, you must configure the CM class tool through your
personal .softinit file or the system-wide fusr/softbench/canfig/softinit file to
execute on whatever host is identified by the data context parameter passed to
it. The value %Host% goes in the execution host field. When this is the case, then
the Execution Manager starts up an instance of the CM tool on the remote host,
if i1 recognizes a remote host in the data context being passed to CMVC. The
CMVC client, executing remotely, binds to the local X server and display its
results where they belong. CMVC starts up multiple instances of the CM tool
under these circumstances, if different data hosts are indicated by subsequent
user requests for CMVC actions.

If you have GMVC client only installed on the host where Execution Manager is
funning, then you must configure the CM class tool to execute onfy on the tocal
nost. To do this, place the value %Local% in the execution host tieid of the CM
tool entry in the .softinit file or cause your system-wide softinit file to be
updated this way. This forces Execution Manager to assume that only one
instance of the CM tool should be started up, and to always start il on the same
host it on wkich Execution Manager is exescuting.

Appendix £. CMVG and SOE WorkBench/6000 209

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 26 of 43

When the execution host is set to %Local%, Execution Manager ignores the host
portion of the data context. However The CMVC client does pay attention to the
host portion. Il you have asked it to deal with data on a remote host, it will balk.
This can happen if you set the Development Manager to a path beginning with
/nfs/hostname/. ...

If you really only have the CMVC client instatled on the host on which your users
execute Execulion Manager, and you want tc access remote files made available
to your CMVC client machine through NFS, do not access them by setting the
Development Manager context to a path name that begins with /nfs/hostname, or
by explicitly naming remote data host. Development Manager is network aware,
and infers from this path name that the data context is in fact on a remote host,
and sets up the data context parameters accordingly. CMVC will then refuse
your request (If CMVC were network aware, it could ook to see if the data
context were available at the defauit NFS path and access it there, but this is not
the case as of CMVC Version 2, Release 1). instead you should set up a link
(whose path name does not include /nfs/hostname) to a directery mounted in this
default NFS path, and set your Development Manager data context to this
directery. Under these circumstances, the Development Manager is unaware
that the data is remote and passes data context to CMVC as a local path name.
Execution Manager then starts up a local CMVC instance.

The default execution host selting for CMVC is %Local%. This is brieHly mentioned
in “Broadcast Message Server” of /1BM CMVC User's Reference., CMVC
installation procedures appear to place a file, named softcmveinit, in the
fusr/softhench/config/softinitsrc/class-defaults file, but may not actually
execute the /usr/softbench/etc/merge-init fite, which merges all tool vendor
contributions into fusr/softbench/config/softinit file, which is the system-wide
configuration file. This is the recommended approach to tailoring your
system-wide softinit settings. See “Customizing Tool Initiation” in Installing
IBM AlX SDE WorkBench/6000 and IBM AIX SDE Integrator/6000 for details on
this file. You may bs confused if you are not familiar with this process. Follow
the directions given in *Installing the CMVC Clients” of /1BM CMVC Client
Instailation and Configuration, which explicitly advise the system administrator to
edit the /fusr/softbench/config/softinit file directty.

E.4 CM Tool Messages

The SDE WorkBench/6000 integrated CMVC client may be activated through BMS
messages by varicus tools that request files be checked in or out, releases be
created or extracted, and context mapping e changed. It responds to the
general tool messages sent by Execution Manager to start, stop, This message
traftic can and should be observed if you, or your users, experience problems, or
situations they do not understand, resulting from toel interaction. Refer “The
Message Interface” in Configuration Management Version Control User' s
Reference, Version 2 Releass 1 if you need to determine which messages CMVC
will respond to and what the parameters to the messages represents. Many
problems may e caused by a misunderstanding on the part of the new SDE
WorkBench/6000 user about the data and execution contexts involved with the
tools being exercise in a distributed environment. Analysis of the message
traffic readily identifies what data is being passed to what tool, and what precise
acticn is being requested. ~

210 CMVC Live

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 27 of 43

EXHIBIT 3

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Pag%28 (laféflig,
age l o

Date: Thu, 19 Aug 93 16:52:36 EDT
From: mitu@vnet.IBM.COM

To: dalamb@qucis.queensu,ca

Subject: Addition to software-eng FAQ

From: Adrian Mitu

Internet: mitu@vnetf.ibm.com
VNET: TOROLABG (MITU)

Subject: Addition to software-eng FAQ
David,

Can you please add the following product description to the CM products
section of your FAQ?

Thanks!
Adrian.

Configuration Management Version Control (CMVC)

Product Description

CMVC tightly integrates the following functions:

1} Configuration Management (CM)
Software Configuration Management (SCM) is the process of identifying,
tracking,
and controlling changes to software configuration items (SCI}. SCI's in CMVC
terminology are called compeonents. A configuration consists of a family of
components. CMVC components can represent any cbiects that need to be managed:
software modules, documentation sets, design reguirements, obJject code, etc.
Within the family, the components are arranged in a tree-like hierarchical
structure that reflects the structure of your organization and the structure
of the projects you are working on.

2) Version Contrel (VC)
Version Control manages all the versions of all the 8CI's. Any version of
any SCI is available at any time. The mechanism used is forward-delta
versioning, that enables wversion branching with a minimum of storage wasted.
Both ASCII and binary files can be stored under CMVC's Version Control
mechanism. All of the SCI are avallable to users from a CMVC server, although
their physical location can be distributed. This eliminates confusion when
looking for a particular source code file belonging to a particular preduct,
for example.

3) Problem Tracking (PT)
Problem Tracking works through two mechanisms: Defects and Features. Defects
will track the lifecycle of a problem with any of the 8CI's from identification
all the way through to final resolution. CMVC introduces and enforces a
methodology for resolving Defects and implementing Features. An established
software development preocess is essential for improving the quality of the
product. Moving your organization from a low level of process maturity to a
higher one is dependent on everybody in the crganization knewing and following
a repeatable process. CMVC makes it easy to follow and learn the process by
notifying the users who need to take some action that they must provide some
input, or take certain actions.

http://www .cs.queensu.ca/Software-Engineering/blurb/cmve 7/8/2004

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Pag;: 29 off43
age 2 of 3

4) Change Control (CC)
Change Control provides an audit Track that identifies which files have gone
through what changes, when, who modified them, and why. A Defect or Feature
may result in the modification of hundreds of files across more than one
product, including documentation and testcases. The Change Control precess,
through the mechanism of Tracks, will produce and keep records of each
file modified in each separate product as related to the particular defect
or feature. When you are ready to include the changes for the defect in the
release and build the release, you only need to specify the Track number (same
as the Defect number) and all the changes will be committed to the database
and included in the release. Product baselines (called Levels in CMVC's
terminology) are created by specifying which fixed defects and implemented
features are to be included. All tnhe changes associated with a particular
defect or feature are therefore tresated as a unitary set,.

5) Access Control (AC)
Access control 1s done at the CMVC component level. Access authority is
inherited downward from parent components to children components. There is
a fine grain of access permissions that can be configured in CMVC, going
far beyond typical read/write permissions. Access is also granted automatically
by CMVC to authorized users who must take certain actions. For example, a
developer cannot normally change ssurce code files, but when he is responsible
for fixing a defect, CMVC automatically gives him permission to modify the
files belonging to that particular release, until the developer indicates to
CMVC that he has finished fixing the defect.

6) Automatic Notification
A1l the users who must take some action are notified by CMVC automatically.
Alsc all the users who wish to be nctified (for interest) of changes in
CMVC, will be notified by CMVC. The level cf interest is configurable by
component and by action. The notification is dene via electronic mail, so
users de not have to 'log in' to CMVC to find ocut about that they must
take an action or about the changes they are interested in.

7) Release Management
A CMVC Release groups together a set of files beleonging to one or more
components into a legical unit. Files and components can be shared by more
than one release. This feature encourages software reusability between
different
projects. A maximum of commeonality is maintained even 1f the versioning of
a particular file is split by the projects that are using it. CMVC Releases
allow you to extract an older version (e.g. a previous release} of your source
code and work on that (as opposed to on the most recent) for fixing a problem
or deriving a new strand of yocur product. Baselines {(called Levels in CMVC)
can be defined as snapshots of a Release. Also, levels can be classified as
development levels, productions levels, etc. . You can extract all the files
in any level at any time, and you can alsoc extract the differences between
two consecutive levels,

Other features of CMVC include:

Client-Server architecture
All the files and the data reside on one server (although it is possible
to distribute the stored files over a LAN), eliminating the search for
'the right copy of file X' and minimizing the backup effort. The users
access the server through the CMVC clients.

Multiple Hardware Platforms Supported

The CMVC supports: RISC/8000 (AIX 3.2.x), Sun SPARCstations (Sun 054.1.x)
HP Apollo 9000 series 400, 700 and 800 (HP-UX 9.x).

http://www.cs.queensu.ca/Software-Engineering/blurb/crmve 7/8/2004

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Pa e303of 43
age3 o

Ports to other platforms are under way for both the
server and the client. All the CMVC clients and servers can co-exist in
a totally heterogeneous environment.

Integration throucgh SDE Workbench or Softbench
CMVC uses BMS to provide integration with any tool in the SDE Workbench or
Softkench environment.

Graphical Interface
CMVC's Motif graphical interface makes using CMVC a snap. It provides intuitive
panels and graphical views of the configuration stored and of the project
status. The graphical interface looks identical across all the platforms
supported. A command-line interfaca is also provided.

ke k ok ok kkk ok ok ko kR ok ok k ok k k ok ok ok ok ok ok kk ok k ok k kok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ke ke ko kok Rk ok ok ok ok sk ok ke ek ok o

*OMVC is an IBM product. Contact your {any) IBM rep for pricing and product *

*info. If you can't get hold of an IBM rep, you can send me e-mail at *
*mitu@vnet.ibm.com, and I'll try to locate one. You can also send me e-mall *
*1f you have technical questions. *

ok ok h ok ok dd ok k ok koo ko ko k ok Rk khk ok r ok kk ok ok k ok k ok ok ok hk h ko k kb k ok ok kkk w ok hw ke kddkok bk ok k ko w *dkdowr

Adrian Mitu IBM Canada Ltd.
tel: (416)=-448-6177 1150 Eglinton Ave East, Toronteo,
fax:{416)-448-4414 Ontario, M3C 1H7, CANADA

http://www.cs.queensu.ca/Software-Engineering/blurb/cmve 7/8/2004

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 31 of 43

EXHIBIT 4

Case 2:03-cv-00294-DAK-BCW Document 203

Filed 07/12/2004

A Versatile Development Process

for Small to Large Projects
Using IBM CMVC

Prepared by: Seong R. Yu (Steve)
IBM Santa Teresa Laboratory
555 Baily Avenue, San Jose, CA 95141

Abstract

This paper discusses how IBM* Configura-
tion Management Version Control {CMVC)
can be applied to an Incremental Develop-
ment Model, and it shows how CMVC can
be configured to match different project sizes
and different stages in the software develop-
ment life cycle. Applying too much process
during a stage in the software development
lifecycle can cause unnecessary work, and too
little process can cause lose of control.
Applying the correct amount of process will
help to achieve target quality and produc-
tivity goals.

Introduction

At the IBM Santa Teresa Laboratory
(STL), the size of software development
projects can vary from a small team of few
developers to a large team in excess of two-
hundred developers. The projects have dif-
ferent target cycle times, support multiple
platforms, use different combinations of pro-
gramming languages, and can all exist at dif-
ferent stages in the product life cycle.

Configuration Management Version
Control (CMVC), an IBM licensed program',
has been selected as a strategic tool to STL's
needs. Table 1 shows the different tools
deployed at STL prior to establishing site
wide CMVC support,

CMVC was chosen for the following func-
tions [4]:

« Configuration Management
+ Version Control
+ Change Control
Problem Tracking
Project-wide Coordination
+ Distributed Development Environment

The advantage of CMVC is its versatile
development process that can be configured
for small, medium, and large projects. The
process can also be configured to meet the
needs of sach stage of development: Proto-
type, development, test, preship, mainte-
nance, and emergency fix. New processes
can also be created using a combination of
processes shipped with CMVC,

Ready accessibility, ease of use, low
support and maintenance cost, scalability,
configurable process, and high availability are

I IBM Configuration Management Version Control/6000 (Program 5765-207)

Page 32 of 43

the support characteristics of the STL Site
CMVC. Projects using CMVC will benefit
from improved quality [1] and productivity.

CMVC satisfies six elements of 1S09001
[23:

» Design Control
+ Document Contrel
» Product [dentification and Traceability
+ Inspection and Test Status
Control of Nonconforming Product
+ Internal Quality Audits

The large product development projects,
such as IMS and DB2* for the MVS plat-
form, have a longer history at STL as com-
pared to the smaller workstation development
projects for the OS/2* platform and more
recently for the AIX* platform.

Many of the earlier processes in use by
STL were centered on large mainframe
projects such as the business and product
planning process, development process, and
distribution and service process. The first
workstation projects struggled to define the
right development process and to find sup-
porting tools. Adapting the same develop-
ment process used for the large mainframe
projects would have been too burdensome.

2 LCS - Library Contrel System (IBM IUO)
3 FPTM - Problem reporting and tracking system
4 DCR - Design Change Request

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 33 of 43

TABLE 1

TOOLS DEPLOYED AT SANTA
TERESA LAB PRIOR TO CMVC

Activity Platform Library Preblem Design Build Service
System Tracking Change
Tracking
Prototyping All none none none none none
Code Develop- MVS LCsZ FPTM3 DCR? CLEARSsPAD
ment VM LCS FPTM DCR CLEAR SPA

082 PVCS’ neme none MAKE none
AIX 8SCCS%® nome nome MAKE none

Information All 1D0PSY none none IDPS 1DPS
Peyslopmeny,

The scope of this paper is limited to the
discussion of the development process and
CMVC. The components of the develop-
ment process in this paper refer to source-
code change control, problem management,
and design-change management. A simple
process is better suited for a small project and
for all projects at initial stages. A more e¢lab-
orate and rigorous process is necessary to
coordinate a large number of developers
working on a large product in later stages of
development and in maintenance stages.
CMVC is an excellent tool that can adapt to
these environments.

5 CLEAR - Contro! Library Environment And Resource system (IBM)

6 SPA - Service Process Architecture (IBM)

7 PVCS** - Polytron Version Centrol System (trademarked product of INTERSOLV Inc,, an IBM Business Partner)
8 SCCS - Source Code Control System (shipped as part of AIX)

9 IDPS - Information Develepment Publishing System (IBM 1UQ)

Case 2:03-cv-00294-DAK-BCW Document 203

Applying CMVC to
Incremental Development
Model

An example of an incremental develop-
ment model, also called an evolutionary
model [3], is shown in Figure 1. In this
model, a programming project begins with an
initial planning phase followed by a series of
increments. During the planning phase, deci-
sions are made concerning the number of
increments, target dates and schedule,
resource assignments, and programming
objectives for each increment.

+
!

plan {planning|

| S I R EE—
freg'me| deur |ircgr| test |
L e

T 1 _Fr 1
Jreg'ntq{ deut |intgr| test |
[S S W S |

7 T T 1
|req'me| deut |ircgr| vest
— 11T

tine

Fig. 1. Incremental Development Model

The programming objectives are derived from
requirements such as request to add new
functions and features, enhance an existing
function or feature, provide solution 1o previ-
ously reported problems, or change design.
A good increment plan will yield 2 running
system at the end of each increment,

In the model shown in Figure 1, there are
three increments. Each increment consists of
four phases: 1) requirements analysis phase,
2) design, code, unit test (dcut) phase, 3)
build and integration phase, 4) test phase. At

Filed 07/12/2004

the start of each increment, further refine-
ments and adjustments to the schedule and
resource assignments can occur. During the
requirements analysis phase of each incre-
ment, the requirements and programming
objectives are further broken down into more
detailed requirements and program design.
The decision to accept, reject, or defer a
requirement for implementation can occur
during both the initial planning phase and the
requirements analysis phase of each incre-
ment. Inputs to the development (dcut)
phase of an increment are the set of require-
ments accepted for implementation. At the
completion of the development phase, the
build and integration phase begins. During
this phase, all of the code is compiled and
linked to produce a running system for
formal testing. Problems identified during
the test phase of each increment are either
resolved in the current increment or deferred
to a subsequent increment.

CMVC Feature and Defect processes can
be applied to support the incremental devel-
opment model as illustrated in Figure 2. A
feature in CMVC is used to document and
track new functions and design changes. A
defect in CMVC is used to document and
track problems and their resolution. During
the initial planning phase, all documented
features in CMVC that pertain to the project
can be reviewed, categorized, assigned, and
accepted. The accepted features in CMVC
are then input to the development {dcut)
phase of the increment. Problems identified
are documented and tracked wusing the
CMVC Defect. If a defect is not resolved in
the current increment, then it becomes input
to a subsequent increment. In some cases,
resolution of a defect may require adding new
function or changing the current design. In
CMVC, this can be accomplished by opening
a new feature and referencing the defect,

Page 34 of 43

Case 2:03-cv-00294-DAK-BCW Document 203

1
|Feature | 4———
— |
| | Develop | |
L—p|Irregrate | +—]
| Test | |

—i—
L |pefect |

LhoY 2
—
| | Develep §
L p|inteqrate| —
| Test |
e —

L—p|pefect |
—_

| —

| |7eature |4 m—y
|

|

—_———————

Fig. 2. CMVC Inputs to Incremental Devel-
opment

An overview of the CMVC Feature
process with the CMVC Track subprocess is
illustrated in Figure 3. When a new feature is
opened to document a new user request or a
design change request, CMVC automatically
notifies the owner. The owner has a choice
to accept, return, cancel, or reassign the
feature to someone else.

|

!
Ennancements, — aceept — File
Hew Functions —|Peature| —m| Track | #——»Changes
Design charge L
| \

|
|
1 | 4
design | ALl Tracks ars
suze | Complets
Tevien |
|

| |
1 i

|

Featyre i #———

close

Fig. 3. CMVC Feature Process Overview

If the DSR subprocess is configured, the
feature owner will need to complete the
design, size, and review steps prior to
accepting the feature. If the feature 1is
accepted for implementation, then the even-

Filed 07/12/2004

tual result in CMVC will be to create a new
file or to make changes to an existing file that
contains the code. Each file change produced
by a file check-in step is monitored by a
CMVC Track. If a feature affects more than
one release, multiple tracks are created by
CMVC to monitor the file changes. When
all file changes and tracks associated with a
feature have been completed, the feature is
then closed.

The CMVC Defect process steps are the
same as the steps in the CMVC Feature
process, and therefore are not discussed here.
An illustration of the CMVC Defect process
is shown in Figure 4.

| B
r— |
Problem r v accept ! H File
Report ~——#[Defect)——D! Track | 4———Cnanges
L J]
T
|
i
A1l Tracks are
Complete

i
pefect is 4————-

closed

Fig. 4. CMVC Defect Process Overview

An increment or a driver in a development
project can be represented by a level in
CMVC. Figure 5 shows an overview of the
CMVC Defect/Feature process with CMVC
Track and Level subprocesses configured.
CMVC Level subprocess is a configurable
subprocess in CMVC, and if configured, it
will monitor collection of file changes within
a release. The release owner will normally
define the levels in CMVC, decide which
tracks to include in a level, commit the level,
and complete the level. When a level is com-
mitted, all file changes associated with the
level are also committed. When the level is
completed, all tracks associated with the level

Page 35 of 43

Case 2:03-cv-00294-DAK-BCW Document 203

will be completed, and all features and defects
will be closed if all of its tracks have been
completed.

—_—
F_J-“—"—m1
rt——————— | |
Level
Brhancenents/ r jaccept T 1 File
¥ew Functions —7—|Featuraf *| Track | *Ckanges
L] L 1 I ‘ [
| | 11t
i | |1
i |
o jaceept r 1 File
“»|reature} #| Track | # »Changes
L] L 1 I
11t
||t
11
problen r jaccept r 1 | B Fale
Report =-——4|Defect I+ Track | #—1—Changes
L J | i [
S — |

Fig. 5. CMVC Defect/Feature Process with
Track and Level Subprocesses

Configuring CMVC to Match
Project Size

CMVC Configurable Subprocesses

CMVC provides configurable subprocesses
as shown in Figure 6. This illustration
shows, in clockwise steps, an example of a
feature/defect cycle from its creation to
closure. Each of the configurable subproc-
esses is labeled and represented by a box.
The arrow points to the next step in the
process with the condition enclosed in paren-
theses. The sequence in which each sub-
process plays a role can be seen in this
example. Feature and defect processes are
separate and independently configurable.

If no subprocess is configured, a feature or
a defect can be opened and closed independ-
ently from the code changes made in the
CMVC files. Also, CMVC file changes will

Filed 07/12/2004

be allowed without reference to a feature or a
defect in CMVC. Configuring the track sub-
process will enforce file changes by requiring
a feature or a defect to be specified when a
file is changed in CMVC through the file
check-in action. The track will monitor the
file changes for a feature or a defect by
recording the file name and version number.

Feature/ Feature/
Defact closed Tetect
T |
(Rl1 accept!| | 10per;
+
|
Vertfy | verify SR des:gn
recordis! | Subprocess Subprocess |

|
|
‘ |
|

t
(K11 complete} | !

revies | accepted)
b Track | Track e
! status | subprocess |
L flaccept]
t +
(All accept)| T
Approval | Approval |
Subprocess | record(s] |
Test | Teat
recordis) | Subpracess
J1211 aceepti
T L
| File change (5]
fLevel eompletet |
| | 111 complete]
|commit gile | Level Fix —r——
|cranges witkin} Subprocess Subprocess | Fix |
|uevelr |+ | recordls) |
S —

{a11 complete)

Fig. 6. CMVC Configurable Process Over-
view

The DSR subprocess for feature and defect
can be independently configured for each
component in CMVC. It is a component
process. The DSR subprocess allows for
design, size, and review steps. During the
size step, sizing records can be created and
assigned to component owners. All sizing
records must be accepted to proceed to the
next step. If the resolution of a feature or a
defect requires coordination between compo-
nent owners, then the DSR subprocess is

Page 36 of 43

|tall sizing
I3 | records are

Case 2:03-cv-00294-DAK-BCW Document 203 Filed 07/12/2004 Page 37 of 43

